Intelligent Data Centres Issue 19 | Page 21

INDUSTRY INTELLIGENCE POWERED BY THE DCA INDUSTRY INTELLIGENCE POWERED BY THE DCA From cradle to cradle – Creating a Circular Economy for the data centre industry Digital innovation has meant business approaches and capabilities have needed to adapt to transform, and the data centre industry has been an enabler for rapid growth. Deborah Andrews, London South Bank University, discusses how data centre leaders can ensure they contribute to a Circular Economy in today’s transforming technology sphere. The Internet and World Wide Web as we know it were introduced to the public in 1989; the services offered by this digital communication technology have proved so popular that during the past 30 years engagement has grown at an astonishing rate and 4.2 billion people (55% of the global population) are now ‘connected’. This rapid growth was of course enabled by concurrent development and expansion of the data centre industry, which will continue throughout the coming decade and by 2025, for example, the sector will grow by 300% in Europe with global growth of 500% by 2030. The combination of increasing reliance on and rapid expansion mean that to date, the data centre industry has focused on operational factors and provision of ever faster, 100% uninterrupted service; consequently, consideration of many factors other than operational energy efficiency have been marginalised. For example most DC equipment is designed for a linear economy – i.e. from cradleto-grave – a take, make, use, dispose system which excludes regard for what happens to products when they reach end of life. Products are not designed for easy disassembly and separation of components, which makes refurbishment and recycling difficult in some cases and impossible in others. Equipment also includes components that are unique to the various generations and models, which prohibits interchangeability and limits reuse. Consequently, the data centre industry contributes to WEEE (waste electrical and electronic equipment), which is currently the fastest growing global waste stream, and every year millions of tonnes of resources are wasted. In addition to rapid growth in the number and variety of electrical and electronic products on the market, WEEE growth is compounded by the lack of investment in and development of appropriate collection and recycling infrastructures. WEEE includes a number of CRM (Critical Raw Materials); these materials are defined as ‘critical’ because the unmined reserves are very limited, they are located in geo-politically sensitive areas, substitution with other materials is currently impossible and recycling and reclamation rates are very low for some materials and non-existent in others. They are also of high economic and technical significance and although the volume and mass of CRM per data centre product is miniscule, electronics cannot function without them. Therefore, any shortages due to factors such as ring-fencing reserves and political instability will disrupt the supply chain www.intelligentdatacentres.com Issue 19 21